VAE(2/4)実施例の説明
https://benrishi-ai.com/variational-ae02/前回(第1回)では、オートエンコーダの概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、VAEの実施例について、ネットワーク構造を中心に説明します。 ネットワーク構造 -------- まず、VAE(Variational Autoencoder)のネットワーク構造について説明します。以下、[1]学習フェーズ、[2]生成フェーズ、の2つ ...
類似スコア 141
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例
VAE(1/4)オートエンコーダの概要
https://benrishi-ai.com/variational-ae01/今回のテーマとして、深層生成モデルの基礎とも言うべきVAE(Variational Autoencoder)を題材に取り上げていきます。 背景 -- 生成モデル(Generative Model)とは、所与の学習データセットをベースに、学習データとは異なる新しいデータを人工的に生成するためのモデルです。データの種類は、静止画、動画、音声(楽曲、音、声など)、文章(小説、俳句、チャットなど)な ...
類似スコア 121
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: 公知 実施例 進歩性 発明
VAE(3/4)理論的な裏付け
https://benrishi-ai.com/variational-ae03/前回(第2回)では、VAEの実施例について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、VAEの理論的な裏付けについて説明します。 数学的解釈 ----- 前回では、学習フェーズにおいて、エンコーダが z=μ+σ・ε の演算を行った後、得られたL次元特徴ベクトル{z}をデコーダ側に出力する旨を説明しました。ここで、ε は、標準正規分布に従って生 ...
類似スコア 108
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例 論文
Pix2Pix(2/4)実施例の説明
https://benrishi-ai.com/pix2pix02/前回(第1回)では、Pix2Pix の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、Pix2Pix の実施例について説明します。 CGANベースの Image-to-Image モデル --------------------------- 早速ですが、前回出した検討課題の解答例を図1に示します。図1の例では、CGANの基本モデルに ...
類似スコア 107
ブログ執筆者: 弁理士 【個別ページ】
アテンション機構(2/4)全体構成の説明
https://benrishi-ai.com/attention02/前回(第1回)では、アテンション機構の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、アテンション機構の実装例として、“Seq2Seq with Attention” の全体構成について説明します。 エンコーダの構造 -------- まず、エンコーダのネットワーク構造を図1に示します。 【図1】エンコーダの構造例 エンコーダは、 ...
類似スコア 98
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 実施例
Seq2Seq(3/4)実施例の説明&考察
https://benrishi-ai.com/seq2seq03/前回(第2回)では、Seq2Seq の前提知識として、再帰型ニューラルネットワーク(RNN)の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、Seq2Seq の実施例を説明するとともに、本発明のポイントを軽く考察してみます。 問題の設定 ----- Seq2Seq では、例えば、英語をドイツ語に翻訳する翻訳問題について取り組みます(図 ...
類似スコア 98
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例
GAN(2/4)実施例の説明
https://benrishi-ai.com/gan02/前回(第1回)では、GANの概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、GANの実施例について、生成器の学習方法を中心に説明します。 全体の流れ ----- 改めて説明する必要がないほど有名な話ですが、GANは、紙幣の偽造モデルによく例えられます。偽造者(=Generator)は本物に近い偽札を作ろうとし、警官(=Discrimi ...
類似スコア 97
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 従来技術 特許出願 特許戦略 発明
VAE(4/4)総括
https://benrishi-ai.com/variational-ae04/前回(第3回)では、VAEの理論的な裏付けについて説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3回分の検討を総括します。 発明ストーリー ------- 【従来技術】 所与の学習データセットをベースに、学習データとは異なる新しいデータを人工的に生成する「生成モデル」が知られている。この類のタスクは ...
類似スコア 93
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例
Seq2Seq(2/4)再帰型ニューラルネット
https://benrishi-ai.com/seq2seq02/前回(第1回)では、Seq2Seq の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、Seq2Seq を理解する上での前提知識ともいえる再帰型ニューラルネットワーク(RNN;Recurrent Neural Network)の概要について説明します。 問題の設定 ----- RNNでは、指定された文章を1語ずつ暗唱する、暗唱問題につい ...
類似スコア 89
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 機械 従来技術 侵害 特許権 特許権侵害 発明
GAN(4/4)総括
https://benrishi-ai.com/gan04/前回(第3回)では、VAEとGANを比較し、CGANまで発展させた場合のGANモデルの拡張性・応用性の高さについて説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3回分の検討を総括します。 発明ストーリー ------- 【従来技術】 所与の学習データセットをベースに、学習データとは異なる新しいデータ ...
類似スコア 84
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 実施例 従来技術
Seq2Seq(4/4)総括
https://benrishi-ai.com/seq2seq04/前回(第3回)では、Seq2Seq の実施例について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回は、過去3回分の検討を踏まえ、発明ストーリーの一例を提示します。 発明ストーリー ------- 【従来技術】 従来から、自動翻訳の分野において、登録済みのルールを適用して原文を分析することで訳文を出力するルールベース機械翻訳(RMT)や、対訳データの学習を通じ ...
類似スコア 84
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム
アテンション機構(3/4)変形例の検討
https://benrishi-ai.com/attention03/前回(第2回)では、“Seq2Seq with Attention” について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、“Seq2Seq with Attention” の様々なバリエーションについて検討していきます。 第1変形例 ----- 前回では、隠れ状態行列{H1}のすべての要素、すなわち、S個の隠れ状態ベクトルh1を使ってコンテキ ...
類似スコア 82
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: 実施例 発明
GAN(3/4)GANの特徴
https://benrishi-ai.com/gan03/前回(第2回)では、GANの実施例について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、VAEと比較した場合のGANの強みについて解説します。 VAEとGAN ------- まず、比較対象であるVAE(Variational Autoencoder)の特徴について軽く触れます。必要であれば、以下のリンクから復習してください。 事例 #015 ...
類似スコア 81
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例 発明
StackGAN(2/4)実施例の説明
https://benrishi-ai.com/stackgan02/前回(第1回)では、StackGAN の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、StackGAN の実施例について説明します。 システム構成 ------ まず、StackGAN のシステム構成について、図1を参照しながら説明します。 【図1】StackGAN のシステム構成 出展:StackGAN: Text to Ph ...
類似スコア 79
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例 論文
ResNet(2/4)実施例と作用効果
https://benrishi-ai.com/resnet02/前回(第1回)では、ResNet の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、ResNet の実施例およびその作用効果について説明します。 ネットワーク構成 -------- ResNet は、Residual block と呼ばれるサブネットワークを直列的に接続してなるCNN(畳み込みニューラルネットワーク)です。ここで、”r ...
類似スコア 69
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: 実施例 発明
GAN(1/4)発明の概要
https://benrishi-ai.com/gan01/今回のテーマとして、深層生成モデルの基礎とも言うべきGAN(Generative Adversarial Network)を題材に取り上げていきます。 背景 -- 生成モデル(Generative Model)とは、所与の学習データセットをベースに、学習データとは異なる新しいデータを人工的に生成するためのモデルです。データの種類は、静止画、動画、音楽、音声、文章(小説、俳句、チャットなど)な ...
類似スコア 68
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例 論文
YOLO(2/4)実施例の説明
https://benrishi-ai.com/yolo02/前回(第1回)では、YOLOの概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、YOLOの実施例について説明します。 ネットワーク構成 -------- YOLOは、畳み込みニューラルネットワーク(CNN)の一種であり、GoogLeNet(Inception-v1)をベースにしたモデルのようです。図1から理解されるように、(1)関心領域 ...
類似スコア 68
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 公知 従来技術
アテンション機構(4/4)発明ストーリーの作成
https://benrishi-ai.com/attention04/前回(第3回)では、アテンション機構の変形例について検討しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、これまでの検討を踏まえ、クレームを含む発明ストーリーを試作してみます。 発明ストーリー ------- 【従来技術】 例えば、自動翻訳を含む自然言語処理の分野において、エンコーダ部分とデコーダ部分に相当する2種類の再帰型ニューラルネットワーク(RN ...
類似スコア 67
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 従来技術 発明
ResNet(4/4)総括
https://benrishi-ai.com/resnet04/前回(第2回)では、ResNet の改良技術について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3回分の検討を総括します。 発明ストーリー ------- 【従来技術】 いわゆる Alexnet(Krizhevsky et al)の登場以来、畳み込みニューラルネットワーク(CNN)の階層をより深く ...
類似スコア 64
ブログ執筆者: 弁理士 【個別ページ】
キーワード: クレーム 実施例
Pix2Pix(3/4)ノイズはどこへ消えた?
https://benrishi-ai.com/pix2pix03/前回(第2回)では、Pix2Pix の実施例について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。 ノイズの行方 ------ 前回の記事に掲載した図1と図2をもう一度見比べると、元祖GANやCGANにはあったノイズ{z}が、Pix2Pix では無くなっていることに気付きます。今回(第3回)は、「ノイズはどこへ消えた?」と題して、その理由について推論を交えながら ...
類似スコア 63
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例 論文
FCN (2/4) 実施例の説明
https://benrishi-ai.com/fcn02/前回(第1回)では、FCNの概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、FCNの実施例について説明します。 ネットワーク構造 -------- まず、FCNのネットワーク構造は、次に示す図1の通りです。 【図1】FCNのネットワーク構造 出展:Fully Convolutional Networks for Semantic ...
類似スコア 61
ブログ執筆者: 弁理士 【個別ページ】
キーワード: 実施例 発明
StackGAN(1/4)発明の概要
https://benrishi-ai.com/stackgan01/今回のテーマとして、敵対的生成ネットワーク(GAN)ベースのデータ変換処理の一手法である StackGAN を題材に取り上げます。 背景 -- 生成モデルのバリエーション(Variants)の1つとして、テキスト文章の内容に沿った画像を生成する “Text-to-Image Transfer” が挙げられます。先行技術として、例えば、Scott Reed 氏らによる GAN-INT-CLS ...
類似スコア 60
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 実施例 従来技術 進歩性
FPN (2/4) 実施例の説明
https://benrishi-ai.com/fpn02/前回(第1回)では、FPNの概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、FPNの実施例について説明します。 ネットワーク構造 -------- まず、FPN(Feature Pyramid Networks)のネットワーク構造は、次に示す図1の通りです。 【図1】FPNのネットワーク構造 出展:Feature Pyramid ...
類似スコア 60
ブログ執筆者: 弁理士 【個別ページ】
Doc2Vec(5/5)PV-DM<後編>
https://benrishi-ai.com/doc2vec05/前回(第4回)では、PV-DMモデルの概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第5回)は、学習方法に関する補足的な説明を行った上で、クレーム骨子を作成してみます。 PV-DMの学習方法 ---------- 前回の記事(図2)で示したネットワーク構造に対して一から学習を開始しても一応問題ないのですが、これでは学習の効率が非常に悪くなります ...
類似スコア 59
ブログ執筆者: 弁理士 【個別ページ】
キーワード: Apple 実施例 論文
CycleGAN(2/4)実施例の説明
https://benrishi-ai.com/cyclegan02/前回(第1回)では、CycleGAN の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、CycleGAN の実施例について説明します。 システム構成 ------ まず、システム構成について、図1を参照しながら説明します。 【図1】CycleGAN のシステム構成 CycleGAN は、2系統のGANで構成されます。一方の第1GA ...
類似スコア 59
ブログ執筆者: 弁理士 知財フィルター🍎 【個別ページ】
キーワード: クレーム 従来技術 発明 採用
FPN(4/4)総括
https://benrishi-ai.com/fpn04/前回(第3回)では、FPNの特許性について検討しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3回分の検討を総括します。 発明ストーリー ------- 【従来技術】 畳み込みニューラルネットワーク(CNN)を導入した物体検出手法の一例として、R-CNN(Regions with CNN features ...